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Waveguide Input Method for Time-Domain
Wave Propagation Algorithms

R. Y. Chan and J. M. Liu, Senior Member, IEEE

Abstract—A waveguide feed method is constructed for time-
domain wave propagation algorithms. The concept is to connect
a region of homogeneous index of refraction to the waveguide
region by a refractive index taper. The first example of this
method finds the coupling efficiency for a given input into a
waveguide of a particular index geometry. The second example
of this method reveals the evolution of the propagation constant
through a horn geometry.

1. INTRODUCTION

ANY methods have been proposed for time domain

simulation of optical waveguides. They are all based
upon a self-consistent formulation based upon Maxwell’s
equations. The most common method has been Finite Dif-
ference Time Domain (FDTD) [1]. Its simplicity of imple-
mentation and its general nature make this method popular.
Still another method is the Time-Domain Beam Propagation
Method demonstrated by Gomelsky and Liu [2]. This method
is capable of handling dispersive media. Finally, there is the
Wave Propagation Method (WPM) proposed by Chan and Liu
[3] which is a numerically efficient time-domain method. All
of the above methods fall under the category of Initial Value
Problems (IVP).

II. SPECIFICATION OF INITIAL VALUE PROBLEM

Generally, in a waveguide problem, one specifies the fre-
quency of the optical field or, equivalently, its wavelength
in free space. Then, one finds the corresponding propagation
constant, 3, in the given structure through any wave propaga-
tion method such as those mentioned above. However, an IVP
formulated along the time axis requires an input at one point in
time specified for all space. Since 3 in the waveguide for the
given optical frequency is initially not known, it is not possible
to correctly describe the spatial distribution of the field in the
waveguide region even at the initial point of time. Specifying
an initial spatial field distribution in the waveguide arbitrarily
is equivalent to guessing 5. A time-domain wave propagation
algorithm with this input will evolve in time according to
an optical frequency corresponding to this guessed [ dictated
by the dispersion relation of the waveguide. In general, this
frequency is not the one that was specified for the problem
and thus, the IVP is not well-posed.
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Fig. 1. Input geometry for the Gaussian pulse launch.

On the other hand, in a region of homogeneous permit-
tivity, analytical solutions of Maxwell’s equations exist and
consequently, the spatial field distribution for any frequency
can be exactly specified. Therefore, if the input field exists
initially only in a homogeneous region, then the IVP can
be posed correctly. For propagation in a waveguide, one can
add a homogeneous region along the propagation direction
to correctly pose the IVP. This homogeneous region may
be connected with the waveguide region by means of an
index transition. The index of refraction will then gradually
change from that in the bulk to that of the waveguide over
some longitudinal distance. The region of index change should
follow a smooth function to ensure a smooth transition. This
concept is shown pictorially in Fig. 1.

III. NUMERICAL DEMONSTRATION

To demonstrate this concept, consider the problem of time-
domain pulse propagation in a two-dimensional waveguide.
The input for this IVP is a snapshot of the pulse at ¢ = 0. In a
region of homogeneous permittivity, one solution to Maxwell’s
equations is that of a Gaussian beam and the propagation of
the pulse in space follows the Gaussian beam trace. Therefore,
the input field distribution is a spatial pulse modulation over
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the Gaussian trace. Our two-dimensional spatial input is
2
W, z
E(z,z) = —22_exp | ——
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kz?

-exp [i{kz — n(2)}] - exp [isz(z)] } '

Z = Zoff 2

exp [ 2ln2( oAty ) }
This field has two parts: an elliptic Gaussian trace and a
pulse modulation. For the Gaussian, the parameter w2(z) =
w2, [1+(z+d)/ 2, while the parameter R, (z) = (2 +d){1+
[Zox/(z + d)]2} and n(z) = 1/2 tan™![(z + d)/z0x). The
Rayleigh range is z,, = w2,k/2 where w,, is the spot size.
The propagation constant k is defined as k = 27n, /), where
n, is the substrate index and A, is the optical wavelength in
free space. The parameter d is the distance from the edge of
the taper to the focal point of the Gaussian. For example, d =
50 pm means that the Gaussian beam waist (the focal point)
is 50 pm from the start of the taper measured back into the
bulk region. The second part of the field is the modulation.
The elliptic Gaussian can be viewed as a static field pattern
over which a modulation, in our case an optical pulse, may
pass. The pulse is centered at zog and ¢; = ¢, /ns where ¢, is
the speed of light in vacuum. The full-width at half-maximum
pulsewidth in time, Ay, is thus converted to a corresponding
width in space.

One application of this input method is to determine the
launch efficiency for a given input pulse into a longitudinally
invariant waveguide. The launch efficiency varies with w,,
and d. The input energy is found from a 2-D integration of the
electric field intensity in the bulk region. Then, when the pulse
has fully entered the waveguide and the radiation fields have
subsided, one may similarly again determine the energy of the
pulse. The ratio of these two energies is the launch efficiency.

The WPM method was chosen for the simulation because
of its efficiency of memory and computation. A substrate
of LiNbO3 was selected at an optical wavelength of 1.3
pm. Then, the refractive index was found from the relation:
n?(z) = n?+ 2An sech? (2z/W) where n, = 2.14532 and
An = 0.02 while the width parameter, W, was chosen to be
2 pm for a single mode to exist. The taper was found from
a cubic spline with natural boundary conditions connecting
the substrate index to the waveguide index over a distance
of 50 ym. An ultrashort pulse with a pulsewidth Aty = 500
fsec was used. Consideration for the efficiency and accuracy
of the mapping algorithm determines a definite link between
the temporal and the longitudinal spatial stepsize, At and Az
[3]. The spatial stepsize is chosen to be Az = ¢/n;At for
point to point mapping in the substrate. The values of the
computational stepsizes were Az = 0.25 ym, Az = 1 pym
and At = 7.15114 fsec.

Fig. 2 shows a contour plot of the efficiency expressed in
percentage. The data is taken just as the pulse has completely
passed a distance of 600 ym from the start of the taper. The
first observation is that the efficiency varies as the longitudinal
position of the focal point, d. The peak efficiency appears when
the focal point lies just within the taper region. The efficiency
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Fig. 2. Launch efficiency as a function of the beam waist, w,,, and
the Gaussian offset, d. The Gaussian offset distance is positive into the
homogeneous region and negative into the taper. The contour values are
expressed in percentage.

drops faster when the focal point is located behind the taper
than when the beam is placed within the taper. The reason is
that in a homogeneous region, the field diffracts according to
Maxwell’s equations, thus spreading energy well away from
the waveguide core, while in the taper, the field is quickly
guided and more energy is captured. The maximum efficiency,
99.68%, was observed at a beam waist of 2 pm and d = —25
um into the taper. Another observation is that the efficiency is
a function of the focusing. Clearly, the best coupling occurs
when the Gaussian has a beam waist closely matching the
width parameter, W, of the sech? waveguide, as expected.
The computational size of the domain was 200 pm in the
transverse direction and 400 pm in the longitudinal direc-
tion. This amounts to 9.7 Mbytes of storage. The transverse
direction can be decreased if the absorber at the transverse
boundaries is replaced with some absorbing boundary condi-
tion. For this run, 1000 timesteps were used to fully ensure
that the computational window passed a detector located 600
um from the start of the taper. Also, the initial location, z.g,
of the pulse is 200 pm behind the taper interface which puts
the pulse in the center of the initial computational window.
The coupling efficiency could be increased if the index
of the homogeneous region were chosen to be equal to
the peak index, nmax = m{z = 0), of the waveguide. In
this way, the index near the peak of the pulse would not
change from the bulk region to the waveguide. This would
maximize the coupling process. While this is true for other
wave propagation methods such as FDTD, it is not true for
WPM. In WPM, the field is initially mapped from point
to point in the homogeneous region. If the peak index is
chosen for the bulk region, then one should adjust the spatial
stepsize a8 Az = ¢/NmaxAt 10 achieve the same benefit as
before. The central portion of the pulse will undergo the least
amount of distortion. However, when the pulse reaches the
waveguide, there is interpolation error for the field outside
of the waveguide, namely the field of the substrate. Since the
substrate occupies the majority of the window, this degradation
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should be avoided. Therefore, the choice of Az = ¢/nmax Al
is not better than that of Az = ¢/n At for WPM.

As a second application, this input method is used to
calculate the propagation constant, g3, as a 500-fsec pulse
undergoes a horn transition. The horn is formed from the same
sech? profile as in the above example. The width parameter is
ramped via a polynomial spline in the horn region.

To extract . a spatial method is used. Since the phase of
the electric field for a single mode guide varies as exp (i3z),
one can deduce 3 directly from the instantaneous phase of the
electric field at the peak of the transverse profile. Explicitly, the
phase is found from the ATAN2 function in FORTRAN. Then,
the slope of the phase with respect to distance yields 3. To
average over any radiation effects, one can use a longer range.
A 27 range centered about the peak of the pulse was chosen.
A more precise determination of # comes from measuring the
parameter A, defined as A, = 2 7/(3 — k.). The analytical
result at W' = 2 pm is A3"® = 130.20 um. As W increases,
the guide becomes multimode. However, the input Gaussian
will only excite the lowest order mode due to even symmetry.
Note that for W = 3 pm, A7 = 103.95 pm and at W = 4
pm, AZH = 92.66 pm.

The evolution of A, through a horn transition is plotted
in Fig. 3. The peak efficiency parameters given above were
chosen to obtain a steady field. Then, a horn was introduced
at z = 700 um. The top three curves represent a transition of
waveguide width from W = 2 ym to W = 3 pm horn lengths
of 200 pm, 500 pm, and 1000 pm. The final value of A, was
103.64 pm. This shows that even short horn transitions can
settle quickly. The bottom curve represents a transition from
W =2 pmto W =4 um. The final value of Ay was 92.39 pm.
Therefore, the WPM program correctly predicts the evolution
of the pulse as it passes through a horn.

IV. CONCLUSION

In conclusion, a feed mechanism utilizing a longitudinally
tapered index profile is presented for time-domain wave prop-
agation methods. This feed mechanism overcomes the launch
problem faced by IVP’s. This input method is demonstrated
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Fig. 3. Evolution of Ay through different horn geometries. The top three
curves represent a transition from ¥~ = 2 ym to W~ = 3 um for horn lengths
of 200 pm, 500 pm, and 1000 xm. The bottom curve represents a transition
of W =2 umto VW = 4 pm for a horn length of 500 pm.

for the calculation of the coupling efficiency of a short optical
pulse launched into the tapered waveguide and the quick
extraction of the propagation constant from spatial phase
variations.
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